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Abstract—In this paper, we investigate the problem of on-
line data sharing on social networks from a game theoretic
framework. We introduce blacklisting as trigger strategy to elicit
cooperation among the players of a noncooperative sharing game.
Using game theoretic analysis, we show the existence of an
equilibrium in which the sharing conditions are honored when
the involved players employ blacklisting strategies.

I. INTRODUCTION

The rapid increase in participation in social networking sites
and other content sharing sites along with the high volume of
user generated data hosted on these sites has created many
new challenges in different areas such as archiving, indexing,
searching, and sharing [?]. In this paper, we focus on the
sharing problem.

While online social networking is already enormously pop-
ular, sharing of personal content online is proving to be a hard
problem. In many occasions users are often faced with sharing
situations in which they want to limit the access to certain
personal content to a specific set of friends. Depending on
the content being shared, a personal data collection can have
variety of different data with diverse sharing requirements.

Another important concern in the problem of sharing is
the unauthorized sharing (redistribution) of content owned by
people. When valuable objects are involved, users are willing
to share if they expect the other party to honor the usage
conditions bound to the objects. However, those who posses
the shared objects can decide to dishonor the sharing condi-
tions and perform unauthorized propagation of the objects.
This problem is very similar to the digital content rights
management problem [?] on the Internet which is turning out
to be a very hard problem.

Most solutions to the sharing problem and by extension to
the digital rights management problem take the mechanism-
centric approach. The central idea of the mechanism-centric
approach is to develop secure mechanisms based on advanced
cryptographic techniques to prevent unauthorized operations
on the shared data. Although these techniques are essential for
securing the content on sharing systems, it is also illuminating
to investigate the costs and benefits associated with honoring
and dishonoring sharing conditions.

Inspired by previous work in the area of microfinance [?],
[?] and trusted collaborations on social networks [?], we

investigate the incentives the different parties to the sharing
processes have for honoring or dishonoring the conditions
attached to the sharing processes. We propose to model the
sharing problem as a noncooperative game.

A social network is a network created by linking friends
where each edge denotes a friendship. This provides a unique
property to social networks where people are known to each
other locally and are able to exert “social pressure” on friends
to elicit favorable actions. The social pressure can be applied
in many different ways and blacklisting is one of them. The
amount of pressure a user can exert on others depends on the
way the user is embedded in the social network. For example,
if the user has many friends, then she can expect significant
sanctioning capacity. Therefore, she can share data objects of
high value with a requestor and still expect him to honor the
conditions.

Our main objective is to identify, using game theoretic anal-
ysis, the necessary conditions for an equilibrium where sharing
takes place and its conditions are honored when blacklisting
is utilized as punishing tool for dishonoring requestors.

The rest of the paper is organized as follows: Section
?? presents the sharing game model. Section ?? defines a
repeated sharing game model for online social networks. In
Section ?? we introduce the blacklisting strategies and identify
through equilibrium analysis the conditions where the sharing
conditions are honored. The effects of network and non-
network parameters on the model are discussed in Section ??.
Related work is discussed in Section ??.

II. SHARING GAME

We present a noncooperative game model to represent a
sharing transaction in online social networks. In the sharing
game model only two players are involved, the requestor who
wishes to access an object of another user the owner. The
owner can either decide to reject or fulfil the request made
by the requestor. In a sharing transaction, the owner shares a
copy of the object with the requestor who is free to utilize the
object under certain conditions set by the owner (i.e., video
sharing).

A sharing game is initiated when a user makes a sharing
request for an object. In the game, the owner makes the first
move where she can either reject the request and the game ends
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Fig. 1. Extensive form of the sharing game

or she can fulfil the request and grants the requestor access. If
sharing takes place then the turn goes to the requestor where
he can either honor or abuse sharing (the sharing conditions
placed by the owner) and the game ends. The extensive (tree)
form of the sharing game model is shown in Figure ??. In
the game, θ represents the value of the object being shared
as observed by both the owner and the requestor when the
game starts. We let the value of θ be randomly sampled from
a continuous probability distribution F defined on the interval
[0,∞). The payoffs gained by the owner and the requestor
depend on the game. When the sharing request is rejected both
the owner and requestor receive zero payoffs. If sharing takes
place and the sharing conditions are honored then the owner’s
payoff is E which is derived from future requests the owner
can make to the requestor, whereas the requestor’s payoff A
is obtained through the utilization of the object. When the
sharing conditions are dishonored, then the owner’s payoff
is −C because the owner incurs a loss because the sharing
conditions are violated and the owner is not expected to derive
any utility from future transactions with the requestor as a
results of the lack of trust the between the two. The requestor’s
payoff however is A + θ resulting from the additional gain
made from dishonoring the sharing conditions (e.g., pirating
the object). Therefore, a highly valuable object results in a
high incentive for the requestor to abuse the sharing conditions
because the extra utility generated could be high.

III. REPEATED SHARING GAME MODEL

Rational players involved in a single sharing transaction
are always expected to defect, the owner will not share and
the requestor will dishonor the sharing conditions, because
that combination of strategies form a Nash equilibrium. The
reason is if the owner decides to share, then for the requestor,
dishonoring yields the maximum payoff A + θ and in case
the owner doesn’t share, then the requestor won’t improve his
payoff by switching his strategy. Given the requestor’s strategy,
the best strategy for the owner is to abstain from sharing.

In social networks, users are expected to remain active
and engage in many activities with other users in order to
strengthen their social ties, create new relations, and derive

social utility. Thus, we believe that a game modeling user
interactions on a social network should reflect the persistence
in user interactions. In addition, users who interact repeatedly
take into account the outcome history of previous transactions
when making decisions for future transactions. Considering
the previous arguments, we present a repeated sharing game
to model sharing transactions in social networks.

We define a repeated sharing game as being a repetition
of the sharing game played at discrete moments in time (t =
0, 1, 2, ...). At each time step a pair of users engage in the
sharing game. In order to simplify the equilibrium analysis
of the repeated game, we will consider a single requestor
playing with different owners on the social network. However,
the analysis for the single requestor can be generalized to
cover multiple requestors in the network. This is done by
considering a separate independent repeated game for each
requestor and the same analysis applies to each of those games
separately. For the repeated game, we assume that there is an
infinite supply of different objects with different values on the
network. We also assume that the repeated game is infinite
meaning that it consists of an indefinite number of sharing
games played by the requestor and the owners.

In the repeated game model, we use an undirected graph to
represent the social network. From the social network graph
a single requestor is selected. Each sharing game is then
played by the requestor and one of remaining network users.
At the start of each sharing game the value of the object θ
is set using the continuous distribution F and its value is
known to both players. The owner for the sharing game is
determined randomly through a simple random walk taken
by the requestor on the social network graph. The random
walk starts from a random starting user and then continues
indefinitely. The sequence of nodes visited in the walk is a
Markov chain where the initial node is selected uniformly
at random. We denote by P =(puv) the matrix of transition
probabilities of this Markov chain. So

puv =

{
1/d(u), if u, v ∈ E

0, otherwise.
(1)

After each sharing game the requestor proceeds to play
with one of the owner’s friends. A conditional exchange of
information between the current owner and her neighbors will
take place at the end of each sharing game if the requestor
dishonors sharing. In this case the owner will communicate
the requestor’s dishonoring behavior to all of her neighbors.
If the requestor honors trust then no exchange of information
takes place. In the game model, we assume that the users who
know about the requestor’s dishonoring behavior will black-
list him so they will not be willing to deal with the requestor in
the future. If during the repeated game the requestor makes a
sharing request to a blacklisting user then the request is always
denied.

In the rest of the paper we will denote the repeated game
with Γ(S,P, w, r), where S denotes a single sharing game, P is
the transition matrix for the random walk, w is the requestor’s
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discounting factor for future transactions, and r denotes the
current requestor.

IV. EQUILIBRIUM ANALYSIS OF THE REPEATED GAME

In this section, we find the necessary conditions for an
equilibrium in which sharing conditions are honored in the
repeated sharing game.

For the repeated game Γ, an equilibrium where sharing takes
place and is honored can’t be reached if sharing transactions
take place unconditionally. The reason is if there are no
threats of punishment for defection, then the requestor will
always dishonor the sharing conditions since it represents the
best choice for him. Thus, an equilibrium in which sharing
takes place and is honored must be based on “conditionally
cooperative” strategies in which the owner will switch from
cooperative (sharing) to uncooperative behavior (not sharing)
if the requestor dishonors sharing.

Trigger strategies [?] are a class of conditionally cooperative
strategies that are employed in repeated non-cooperate games
in order to develop cooperation among the players. In trigger
strategies, a player will continue to cooperate as long the other
player (opponent) cooperates. Once a defection is observed,
the player will stop cooperating in future encounters. Trigger
strategies vary depending on the trigger level and severity of
the punishment.

For the repeated game Γ(S,P, w, r) we will consider a
blacklisting based trigger strategy for the owners. The black-
listing trigger strategy is defined as follows:

1) The owner will act cooperatively, owner will share with
the requestor, as long as the requestor acts cooperatively.

2) If the requestor deviates from cooperative behavior (dis-
honors the sharing conditions), then the owner and all
of his/her friends will black-list the requestor forever.

Next we analyze equilibrium for the repeated game under
the blacklisting trigger strategy. We find the necessary and
sufficient conditions for an equilibrium where sharing can take
place and is honored.

We identify each sharing game played at any time during
the repeated game with the pair (θ, i), where i is the owner
involved and θ is the value of the object requested. The social
pressure that an owner can exert on the requestor depend on
how she is embedded within the social network. To measure
this potential, we introduce a threshold value ϑi for each
owner in the social network. We denote these values as sharing
thresholds since they indicate the extend to which an owner
can safely share with the requestor in any sharing game. In the
repeated game an owner who is involved in a sharing game
will share the object with the requestor only if θ ≤ ϑi and the
requestor is not blacklisted. Otherwise, the owner will reject
the request. Thus, for a given sharing game if the object’s value
is too high, the owner will withhold because the requestor’s
incentive to dishonor sharing will be high.

The next theorem is adapted from [?] for our sharing game,
it provides a subgame perfect equilibrium solution for the
repeated sharing game Γ(S,P, w, r) in terms of the sharing
thresholds.

Theorem 1: Consider the repeated game Γ(S,P, w, r) and
let P be the transition matrix for the requestor r on the
social network graph. Then, the vector ϑ = (ϑ1, ..., ϑn) of
blacklisting trigger strategies is a subgame-perfect equilibrium
if and only if

ϑi = Aei[(I− wP)−1 − I]µ(i)

where,
ei is the ith unit vector of length n,
I is an identity matrix of size n, and
µ(i) is a vector of size n where the jth entry is F (ϑj) if j is
a friend of i and zero otherwise.

Proof: The proof of the theorem is similar to [?] with
some modifications. In the proof, we show that if condition
stated above holds, then the desired equilibrium, sharing is
always honored, is reached. The idea behind the proof is
to show that the players will not improve their payoffs if
they deviate from the equilibrium strategies at any point
during the repeated game. To achieve this, we apply Bellman’s
optimality principle [?] to show that if a single deviation from
the equilibrium strategies doesn’t increase the payoff of the
deviating player, then it will not be considered in the first place
and the equilibrium stands. Assume, without loss of generality,
that at time t = 0 the requestor is playing with owner (i). We
need to consider two cases when θ > ϑi and when θ ≤ ϑi. In
the first case when θ > ϑi, the owner would not share because
the value of the object is too high and the requestor has high
incentive to dishonor sharing if it takes place. In this case,
both actors don’t have any motivation to deviate from their
choices because it yields the best possible payoff for both. In
the second case where θ ≤ ϑi, the owner will share. In this
case, the owner will not defect because this choice yields the
maximum possible payoff E for her. For the requestor, the
rational choice is to dishonor and get A+ θ if the short-term
gain due to dishonoring is greater than the long-term loss from
the punishment due to the blacklisting applied by the owner
and her friends. Therefore, for the desired equilibrium we need
to find the conditions for which the long-term loss for the
requestor is greater than or equal to the short-term gain due
to dishonoring. In other words, the requestor will not have the
incentive to deviate from the equilibrium strategy because he
is always better off honoring the conditions.

Let EUH be the expected utility of the requestor when he
always honors, and let EUD be the expected utility when the
requestor dishonors sharing once. Given that the object values
are sampled from the continuous distribution F (X) = Pr{θ ≤
X}, then the requestor’s payoff when playing with any owner
i in the future equals zero with probability Pr(θ > ϑi) =
1− F (ϑi) and is equal to A with probability F (ϑi) provided
that the requestor is not black-listed. Given that the requestor
starts the repeated game with owner i and using the transition
matrix P to dictate the next owner the requestor will play with,
we can find the expected utility of the requestor when there
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is no deviation as.

EUH = A+
∞∑

t=1

AwteiPtµ = A+Aei[(I−wP)−1−I]µ (2)

where µ = (µ1, ..., µn) with µj = F (ϑj).
Now, consider the other case when the requestor deviates

from the equilibrium strategy and dishonors the conditions.
Once the sharing is dishonored the requestor will be black-
listed. Thus, according to the repeated game model the re-
questor will get zero payoff if he happens to play with the same
owner or any of her friends. The payoff for the requestor from
the first game in which he abused sharing is A+ θ. Assuming
the requestor starts with owner i, we find the expected payoff
in this case as,

EUD = (A+ θ) +
∞∑

t=1

AwteiPt[µ− µ(i)] =

(A+ θ) +Aei[(I− wP)−1 − I][µ− µ(i)]

(3)

In the above equation, µ(i) is a n-vector where for all j 6= i,
µ

(i)
j = µj if j is a friend of i and µ(i)

j = 0 otherwise. In this
step we basically set the expected payoff from the owner and
her friends to zero by subtracting the µ(i) vector from µ in
Equation (??).

To have the desired equilibrium, then EUH ≥ EUD must
hold for all θ ≤ ϑi. Hence, this is equivalent to

θ ≤ Aei[(I− wP)−1 − I]µ(i) (4)

In equilibrium, because Equation (??) must hold for all θ ≤
ϑi, then, the maximum possible trust threshold of owner i is
attained by setting the threshold value to the right hand side
of Equation (??). So we get

ϑi = Aei[(I− wP)−1 − I]µ(i) (5)

Now since the same proof also holds true for all the other
owners in the network, the blacklisting trigger strategies are
in equilibrium.

The sharing thresholds ϑ presented in Theorem ?? indicate
the extend to which the owners can safely share with the
requestor and the (F (ϑ1), ..., F (ϑn)) values represent the
proportion of times each owners will share with the requestor.
The values of the ϑi’s and F (ϑi)’s depend on the social
pressure that each owner has on a requestor via blacklisting.
In other words, owners with high punishing capability have
higher sharing thresholds because the long term losses for the
requestor due to blacklisting by those owners is high. Next we
discuss the effects of the model (non-network) and network
parameters on the on the sharing thresholds.

From the threshold equation in Theorem ?? we consider
the effects of the following parameters on the thresholds, the
sanction cost A, the requestor’s discounting factor w, and
the requestor’s request patterns captured through the simple
random walk P. A black-listed requestor will incur a loss of
A for each game played with a blacklisting owner and so if the
sanction cost increase so will the loss that the requestor will
suffer for each rejected request. Thus, the requestor will be less

willing to dishonor if the sanction cost is high and so the owner
can have a higher sharing threshold with the requestor. For the
requestor a higher discounting factor w indicates that he cares
more about future transactions therefore, the punishment will
be more severe allowing for a higher sharing thresholds. For
the random walk, we postpone the discussion of its effect to
the next section when we present the simulation results.

Since the effect of the network parameters on the sharing
thresholds is not immediately obvious from the threshold equa-
tions, we will consider the effect of two network parameters,
the owner’s degree and the size of the maximum clique in
which the owner is a member. On social networks, the degree
represents the number of friends that an owner has and so
owners with many friends are expected to have high threshold
because they have a high blacklisting capacity and effectively
a stronger punishing capability. Cliques on the other hand
represent strongly connected groups where all of its members
are considered equal in terms of the sharing thresholds due
to the network structural properties of such groups. Owners
who are members of large cliques are expected to have high
thresholds because they have high degree in addition, to being
connected to friends that have high thresholds.

In the next section, we use simulations applied on traces
extracted from actual online social networks to further an-
alyze the effects of the different parameters on the sharing
thresholds.

V. SIMULATION SETUP AND RESULTS

In this section, we use extensive simulations to study the
effects of the network and model parameters on the sharing
thresholds of the owners.

To setup the simulations we used topologies extracted from
flickr.com [?]. Using the traces we constructed a synthetic
social network with approximately 1.7 million users as the
main social graph. From the main social graph we extracted
a set of 1000 different subgraphs each subgraph containing
1000 nodes. To extract each subgraph, we select a random seed
node from the main social graph and then use a breadth first
expansion from the seed node to form the subgraph. For each
subgraph we selected ten different requestors and formulated
a repeated sharing game based on them. Thus, the results
reported in this section are for 1000× 10 = 10, 000 different
repeated games.

For each repeated game we form its transition matrix P after
removing the involved requestor from the subgraph associated
with the sampled game. The remaining model parameters were
fixed for the sampled games. In the simulations, we set the
value of the discounting factor w to 0.9 and the payoff cost A
to 1. For the object values, we use the probability distribution
Fa(ϑ) = Pr{θ ≤ ϑ} = ϑ/(a + ϑ). Here, a is the average
of the object values in the network and is set to 1.0 in the
simulations. Using MATLAB, we find the solution for each
sampled repeated game and get the sharing thresholds for all
the users in the subgraph. Thus, the solution set consists of
10, 000 × 999 = 9, 990, 000 different threshold values for
the different sampled games. For our analysis we randomly
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Fig. 3. Distribution of node degree for the top 10% threshold values

extracted 200,0000 threshold values from the solution set. In
addition, for each user in our final sampled set we find the
information related to the node’s network properties i.e. degree
and size of the maximum clique in which the nodes is member
of.

For the network parameters, we first consider the effect of
the node degree on the sharing threshold. In the previous
section we reasoned that nodes with many friends (high
degree) are expected to have high sharing thresholds because
they have high blacklisting capacity. To check the validity
of our assertion, we took the top 10 percent and bottom
10 percent threshold values from the sampled thresholds and
compared their node degrees. Figures ?? and ?? shows the
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distribution of node degrees for the bottom and top 10 percent
sampled threshold values respectively. For the bottom 10
percent, almost all of the nodes have degrees ranging between
1 and 13 with the median being 2. This means that 50% of
the nodes have two friends or less and the other half have 3
or more friends with 19 being the maximum. The distribution
of degrees in the top 10 percent had greater spread ranging
from 2 up to 600 with a median of 65. From Figure ??, we
also note that a considerable number of nodes have degree of
10 or less. The reason for this is that having high degree is
sufficient but not necessary for having a high threshold value
because there are other network and model parameters that
affect the threshold values. On the other hand having low
degree is a necessary condition for having a low threshold
value. In addition to the node degree, we examined the effect
of another network parameter, the maximum clique size of
a node on the thresholds. As for the model parameters we
briefly describe how the object request pattern of the requestor
resulting from the random walk affects the threshold values.

Next, we consider the influence of strongly connected social
groups [?] on the sharing thresholds. In particular, we look at
the relationship between the threshold value of a node and
the size of the maximum clique size in which the node is
a member. We again consider the top and bottom 10 percent
threshold values and compare the distribution of the maximum
cliques for both sets. Figures ?? and ?? show the distribution
of clique sizes for both sets. For the bottom 10 percent
thresholds, the maximum cliques range from 2 to 6 with a
median of 2 and the majority over 70% of the nodes having
cliques sizes of 3 or less. The distribution of the clique sizes
of the top 10 percent have larger spread from 2 up to 50 with
a median of 12. For the clique sizes of the top thresholds, we
observe a similar pattern to the degrees of the top thresholds
in terms of the spread of the clique sizes and the existence of
considerable number of small cliques. This again is due to the
same reason explained above for the large degrees. Therefore,
the majority of the nodes with high trust thresholds are either
members of sizable cliques or have large number of friends
or the combination of both.

For non-network parameters, the simulations show an effect
for the requestor’s object request patterns, modeled as a simple
random walk, on the trust thresholds. The results show that
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Fig. 6. Sharing threshold values for the nodes when the object request pattern
is based on a simple random walk

Fig. 7. Sharing threshold values for the nodes when the object request pattern
is based on uniform distribution

nodes or cluster of nodes that have few connections to other
social network components (i.e., isolated nodes) tend to have
higher trust thresholds. The reason is a random walk that
reaches an isolated clusters will spend longer time at those
clusters before escaping to other parts of the network this
allows the nodes in such clusters to punish the requestor for
longer periods in case of a defection. We illustrate the effect,
using a small graph. For the graph, we formulate its repeated
game, and find the thresholds using our simple random walk
for the object request pattern. Then, using a uniformly random
based request pattern we again find the threshold values for
the same repeated sharing game. Figures ?? and ?? show
the example graph with the threshold values, shown inside
each node, for the random walk based request pattern and
the uniformly request pattern respectively. Comparing the
threshold values for the chain of nodes in the two figures, we
immediately notice that under the random walk based request
pattern, the threshold values of the nodes increase as the nodes
become more distant from the clique component. When the
uniformly random request pattern is used, the thresholds values
of the same set of nodes decrease as they become more distant
from the clique.

VI. RELATED WORK

In Chapter 3 of [?], Buskens presents a game theoretic
model for the control effects in social networks. The model
consists of a repeated trust game played by a trustee and
a network of trustors. In the model, the trustors use trigger
strategies to penalize the trustee for defections. Under trigger
strategies, the author proofs the existence of an equilibrium
in which trust can be placed and is honored and presents
a solution to the model. In addition, the effects of various

network and model parameters on the equilibrium solution
are analyzed using approximation methods and simulations
on different small synthetic networks.

Although our game model has several similarities to the one
in the above work, our model is different in certain aspects as
well. We introduce a blacklisting trigger strategy in which only
the owner and her friends will stop sharing with the requestor
in case the requestor defects with the owner. Whereas, in
Buskens’s model every trustor could sanction the trustee if she
discovers a defection in the history of the trustee’s transactions
with other trustors. We believe that in large social networking
communities a defection would trigger a blacklisting reaction
similar to the one in our model simply because the friends of
the cheated owner are expected to react more strongly than
other socially distant users on the network.

Mobius and Szeidl [?] address the problem of informal con-
tract enforcement on social networks by considering borrowing
situations between agents. They present a game theoretic
model in which relationships between individuals generate
social collateral that can be used to control the moral hazard
in borrowing situations. Trust between two agents is defined
as the maximum amount that one agent can borrow from
another. The authors proof the existence of an equilibrium
by showing that a borrowing transaction can take place if
the value of the requested item is bounded above by the
maximum network flow (or trust flow) between the borrower
and lender on the social network. Furthermore, they derive
closed form expressions that relate trust to the social network
structure. In our work, we consider sharing situations on the
social network and present a game model for it and then find
the necessary conditions for an equilibrium where sharing is
honored which is similar to problem consider by the authors.
However, our game model is different from the author’s model.
Moreover, we employ a blacklisting strategy as a punishing
tool to reach the equilibrium whereas the authors utilize the
social relationships as a collateral in their model.

In addition, there is a large body of work treating the
problem of sharing in peer-to-peer systems using game theory
(a representative set is given by [?], [?], [?], [?]). Utilizing
different game theoretic models, they address the problem
of promoting cooperation in peer-to-peer systems when non-
cooperative users can benefit from free-riding on others’
resources. Since these papers address the same problem, we
briefly discuss one work. In [?], Zhang et al. introduce an
unstructured file sharing game and an overlay formation game
to model interactions among self-interested users. Users are
modeled as players, where each user adjusts her number of
connections on its available paths to maximize her utility.
They show using examples the existence of multiple stable
network states, Nash equilibria, for the file sharing game
on general networks. In addition, they study the Tit-for-Tat
strategy through the overlay formation game and prove the
existence of equilibrium overlays. Our work is similar to the
above in the sense that we use game theory in order to achieve
cooperative behavior between users in sharing transactions in
social networks. However, we differ in certain aspects for
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example, we deal with transactions on social networks where
relationships can have an effect on these transactions, while
this not the case in peer-to-peer systems. Also, our game model
achieves cooperation through the application of sanctioning for
noncooperative behavior while for the work above it is mostly
based on incentive design to avoid the problem.

Game theoretic models have also been proposed to address
different problems related to wireless communications systems
and networks, we briefly mention a few. In [?], the authors
discuss the problem of cooperative sensing in cognitive radio
where they propose an evolutionary game framework to study
the interactions between selfish users in cooperative sensing.
The work in [?], presents a distributed optimization framework
for wireless multihop sensor networks based on a game
theoretic approach. The authors in [?], study Aloha, a random
access scheme for random-access based wireless networks,
using cooperative and noncooperative Aloha games.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the problem of online data
sharing on social networks. For the sharing problem two major
issues stand out, controlling access to shared content and
preventing unauthorized redistribution of the content.

Inspired by previous work in the area of microlending in
finance [?] and trust collaboration on social networks [?],
we studied the incentives for users to break or adhere to the
strategies that underly the key mechanisms used in online data
sharing. We developed a game theoretic model for the sharing
problem and analyzed them as part of this study. The major
contributions of our study are the following:
• We introduced a noncooperative game for modeling shar-

ing data objects in social networks. To elicit cooperation,
we introduced blacklisting as a trigger strategy that could
offset the incentives that may be present in a noncooper-
ative game.

• We proof the existence of an equilibrium for the repeated
sharing game in which sharing can take place and is
honored, and provide an analytical solution the captures
the necessary conditions required to sustain such an
equilibrium.

• Using extensive simulations on topologies extracted from
online social networking traces, we studied and analyzed
the effects of different network and non-network (model)
parameters on the equilibrium solution.

Future work will investigate different request distributions and
their effects on the equilibrium solution, also we intend to
experiment with different game models that incorporate tem-
porary blacklisting and concurrent transactions and understand
how these elements can affect the analytical solution.
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